First-Order Logic

Part Two



Recap from Last Time



What is First-Order Logic?

» First-order logic is a logical system for
reasoning about properties of objects.

 Augments the logical connectives from
propositional logic with

« predicates that describe properties of
objects,

* functions that map objects to one another,
and

 quantifiers that allow us to reason about
many objects at once.



Some rabbit is cute.

dm. (Rabbit(m) A Cute(m))

—

1 is The existential quantifier

and says ‘for some choice of
m, the tollowing is frue,*




“For any natural number n,
n is even it and only if n? is even”

Vn. (n € N - (Even(n) < Even(n?)))

‘\

0 is the universal quantifier
and says *for any choice of n,
the tollowing is true,*




“Some P is a Q”

translates as

Ix. (P(x) A Q(x))



Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

3x. (P(x) A Q(x))

It x is an example, it must
have property P on fop of
property Q.




“All P's are Q's”

translates as

Vx. (P(x) » Q(x))



Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

Vx. (P(x) - Q(x))

It x is a counterexample, if
must have properfy P bul
not have property Q.




New Stuff!



The Aristotelian Forms

“All As are Bs” “Some As are Bs”
Vx. (A(x) » B(x)) Ix. (A(xX) A B(x))

“No As are Bs” “Some As aren’t Bs”
Vx. (A(x) » -B(x)) Ix. (A(X) A =B(x))

It is worTh committing these patterns fo
memory, We'll be using them tThroughout

the day and they torm fthe backbone of
many first—order logic franslations.




The Art of Translation



Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “every person
loves someone else.”

Go to
PollEv.com/cs103spr25




Every person loves someone else



Every person loves some other person



Every person p loves some other person



Every person p loves some other person

“All As are BSs”
Vx. (A(x) =» B(x))




Vp. (Person(p) —
p loves some other person

“All As are Bs”
Vx. (A(x) =» B(x))




Vp. (Person(p) —
p loves some other person



Vp. (Person(p) —
there is some other person that p loves



Vp. (Person(p) —
there is a person other than p that p loves



Vp. (Person(p) —
there is a person q, other than p, where p loves q



Vp. (Person(p) —
there is a person q, other than p, where
p loves q



Vp. (Person(p) —
there Is a person q, other than p, where
p loves q

“Some As are Bs”
Ix. (A(xX) A B(x))




Vp. (Person(p) —
dq. (Person(q) A, other than p, where
p loves q

)
)

“Some As are Bs”
Ix. (A(xX) A B(x))




Vp. (Person(p) —
dq. (Person(q) A, other than p, where
p loves q

)
)



Vp. (Person(p) —
dqg. (Person(q) A p # g A
p loves q

)
)



Vp. (Person(p) —
dqg. (Person(q) A p # g A
Loves(p, q)
)
)



Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is a
person that everyone else loves.”

Go to
PollEv.com/cs103spr25




There is a person that everyone else loves



There is a person p where everyone else loves p



There is a person p where everyone else loves p

“Some As are Bs”
Ix. (A(xX) A B(x))




dp. (Person(p) A
everyone else loves p

“Some As are Bs”
Ix. (A(xX) A B(x))




dp. (Person(p) A
everyone else loves p



dp. (Person(p) A
every other person q loves p



dp. (Person(p) A
every person q, other than p, loves p



dp. (Person(p) A
every person q, other than p, loves p

“All As are Bs”
Vx. (A(x) =» B(x))




dp. (Person(p) A
Vq. (Person(q) A p # q =
q loves p

)
)

“All As are Bs”
Vx. (A(x) » B(x))




dp. (Person(p) A
Vq. (Person(q) A p # q =
q loves p

)
)



dp. (Person(p) A
Vq. (Person(gq) A p # q —
Loves(q, p)
)
)



Combining Quantifiers

 Most interesting statements in first-order
logic require a combination of
quantifiers.

 Example: “Every person loves someone
else”

For every person.. Vp. (PQT'SOTI(D) -

. there is another person . ( A

. They love Loves(p, q)

)
)



Combining Quantifiers

 Most interesting statements in first-order
logic require a combination of
quantifiers.

« Example: “There is someone everyone
else loves.”

Theve is a person.  dp. (Person(p) A

. that everyone else . ( -

.. loves, LOVQS(C[, P)
)
)



For Comparison

For every person.. Vp. (Person(p) —
. theve is another person . dq. (Person(q) A p # q A
. They love Loves(p, q)
)
)

There 1s a person.. dp. (Per'son(p) A
. thaf everyone else . Vq. (Person(q) A p # g =

. loves., LoveS(QI P)
)
)



Every Person Loves Someone Else




Every Person Loves Someone Else

No one here

is universally
loved.,




There is Someone Everyone Else Loves




There is Someone Everyone Else Loves

This person
does not
love anyone

else,




Every Person Loves Someone Else and
There is Someone Everyone Else Loves

A




For every person.. Vp. (Person(p) —
. there is another person . dq. (Person(q) A p # q A
. fhey love Loves(p, q)

)
)

and A

There 1s a person.. dp. (PQT'SOTI(D) )\
. That everyone else . Vq. (Person(qg) A p # g =

. loves., LOV@S(Q: P)

)
)



Restricted Quantifiers



Quantitying Over Sets

« The notation
Vx € S. P(x)

means “for any element x of set S, P(x)
holds.” (It’s vacuously true it S is empty.)

e The notation

Ix € S. P(x)

means “there is an element x of set S
where P(x) holds.” (It’s false if S is

empty.)



Quantitying Over Sets

 The syntax
Vx € S. P(x)
Ix € S. P(x)
is allowed for quantifying over sets.

« In CS103, feel free to use these restricted
quantifiers, but please do not use variants of this
syntax.

 For example, don't do things like this:
Vx with P(x). Q(x)
Vy such that P(y) A Q(y). R(y).
JP(x). Q(x)




Quantifier Ordering



Quantifier Ordering

e Consider these two first-order formulas:
Vm e N.dn € N. m < n.
dn € N. Vm € N. m < n.

e One of these statements is true. One is false.
Which is which?

« Why?



Quantifier Ordering

Consider these two first-order formulas:
Vm e N. dn € N. m < n.

This says

for every natural number m,
there’s a larger natural number n.

This is true: given any m € N, we can choose n
tobem + 1.

Notice that we can pick n based on m, and we
don’t have to pick the same n each time.



Quantifier Ordering

Consider these two first-order formulas:

dn € N. Vm € N. m < n.
This says

there is a natural number n_
that’s larger than every m € Q

This is false: no natural number is bigger than
every natural number.

Because dn € N comes first, we have to make a
single choice of n that works.



Quantifier Ordering

« The statement
Vx. dy. P(x, y)

means “for any choice of x, there's some
choice of y where P(x, y) is true.”

 The choice of y can be ditferent every
time and can depend on x.



Quantifier Ordering

« The statement
dx. Vy. P(x, y)

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

» Since the inner part has to work for any
choice of y, this places a lot of
constraints on what x can be.



Order matters when mixing existential
and universal quantifiers!



Set Translations



Using the predicates

- Set(S), which states that S is a set, and
- X € y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty
set exists.”



Using the predicates

- Set(S), which states that S is a set, and
- X € y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty
set exists.”

First—order logic doesn't have set
operators or symbols *built in,” It we
only have fhe predicates given above,
how might we describe this?




The empty set exists.



There is some set S that is empty.



3S. (Set(S) A
S is empty.
)



3S. (Set(S) A
there are no elements in S

)



3S. (Set(S) A
—there is an element in S

)



3S. (Set(S) A
—there is an element x in S

)



3S. (Set(S) A
—-dx. x € S
)



1S. (Set(S) A ~dx. x € §5)



1S. (Set(S) A ~dx. x € §5)

3S. (Set(S) A
there are no elements in S

)



1S. (Set(S) A ~dx. x € §5)

3S. (Set(S) A
every object does not belong to S

)



1S. (Set(S) A ~dx. x € §5)

3S. (Set(S) A
every object x does not belong to S

)



1S. (Set(S) A ~dx. x € §5)

3S. (Set(S) A
Vx. x &€ S
)



1S. (Set(S) A ~dx. x € §5)

1S. (Set(S) A Vx. x € S)



1S. (Set(S) A ~dx. x € §5)

1S. (Set(S) A Vx. x € S)

Both of these translations are correct,
Just like in propositional logic, there are
many different equivalent ways of
expressing The same statement in first—
order logic,




1S. (Set(S) A ~dx. x € §5)

1S. (Set(S) A Vx. x € S)



15. (Set(S) A —dx. x € §)

1S, (Set(S) A Vx. x € S)

Why can we swifch which
guantitier we're using here?




Mechanics: Negating Statements



An Extremely Important Table

Vx. P(x)
Ix. P(x)
Vx. = P(x)
dx. = P(x)

When is this true?

When is this false?

For all objects x,
P(x) 1s true.

There is an x where
P(x) is false.

There is an x where
P(x) 1s true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) 1s true.

There is an x where
P(x) is false.

For all objects x,
P(x) 1s true.




An Extremely Important Table

Vx. P(x)
Ix. P(x)
Vx. = P(x)
dx. = P(x)

When is this true?

When is this false?

For all objects x,
P(x) 1s true.

There is an x where
P(x) is false.

There is an x where
P(x) 1s true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) 1s true.

There is an x where
P(x) is false.

For all objects x,
P(x) 1s true.




An Extremely Important Table

Vx. P(x)
Ix. P(x)
Vx. = P(x)
dx. = P(x)

When is this true? When is this false?

For all objects x,
P(x) 1s true.

Idx. = P(x)

There is an x where
P(x) 1s true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) 1s true.

There is an x where
P(x) is false.

For all objects x,
P(x) 1s true.




An Extremely Important Table

When is this true? When is this false?
For all objects x,
VX- P(X) P(x) is true. 3X° _'P(X)

There is an x where For all objects x,
HX . P (X ) P(x) is true. P(x) is false.

For all objects x, There is an x where
VX : _'P (X ) P(x) is false. P(x) is true.

There is an x where For all objects x,
HX . _'P (X ) P(x) is false. P(x) is true.




An Extremely Important Table

Vx. P(x)
Ix. P(x)
Vx. = P(x)
dx. = P(x)

When is this true?

When is this false?

For all objects x,
P(x) 1s true.

Idx. = P(x)

There is an x where
P(x) 1s true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) 1s true.

There is an x where
P(x) is false.

For all objects x,
P(x) 1s true.




An Extremely Important Table

When is this true? When is this false?
For all objects x,
VX- P(X) P(x) is true. 3X° _'P(X)
There is an x where
HX- P(X) P(x) is true. VX' _'P(X)

For all objects x, | There is an x where
VX . _'P (X ) P(x) is false. P(x) is true.

There is an x where For all objects x,
HX . _'P (X ) P(x) is false. P(x) is true.




An Extremely Important Table

When is this true? When is this false?
For all objects x,
VX- P(X) P(x) is true. 3X° _'P(X)
There is an x where
HX- P(X) P(x) is true. VX' _'P(X)

For all objects x, There is an x where
VX : _'P (X ) P(x) is false. P(x) is true.

There is an x where For all objects x,
HX . _'P (X ) P(x) is false. P(x) is true.




An Extremely Important Table

When is this true? When is this false?
For all objects x,
VX- P(X) P(x) is true. EX' _'P(X)
There is an x where
3X° P(X) P(x) is true. VX' _'P(X)

For all objects x, |There is an x where
VX : _'P (X ) P(x) is false. P(x) is true.

There is an x where For all objects x,
HX . _'P (X ) P(x) is false. P(x) is true.




An Extremely Important Table

When is this true? When is this false?

VX. P(x) | "histrue. | 3X. 2P (X)
3X. PO [ "o ts truen | VX P (X)
VX. =P(X) | “plistise - | Ix. P(x)

There is an x where For all objects x,
HX . _'P (X ) P(x) is false. P(x) is true.




An Extremely Important Table

When is this true? When is this false?

VX. P(X) | “bioistme, - | 3X. 7P(X)
X, P(X) | " P ietme | ¥X. 7P (X)
VX. 7P(X) | "plitaie, - | X P(X)

There is an x where For all objects x,
HX . _'P (X ) P(x) is false. P(x) is true.




An Extremely Important Table

Vx. P(x)
Ix. P(x)
Vx. = P(x)
dx. = P(x)

When is this true?

When is this false?

For all objects x,
P(x) is true. 3X° _'P(X)
There is an x where
P(x) 1s true. VX ° _'P (X)
For all objects x,
P(x) is false. 3X° P (X)

There is an x where
P(x) is false.

For all objects x,
P(x) is true.




An Extremely Important Table

When is this true? When is this false?

VX. P(X) | "t s truer | IX. 7P (X)
X, P(X) | " P ietme | ¥X. 7P (X)
VX. 7P(X) | "plitaie, - | X P(X)

Ix. =PO)| "pustase. | VX P(X)




An Extremely Important Table

When is this true? When is this false?

VX. P(X) | “bioistme, - | 3X. 7P(X)
X, P(X) | " P ietme | ¥X. 7P (X)
VX. 7P(X) | "plitaie, - | X P(X)

Ix. =PO)| "pustase. | VX P(X)




Negating First-Order Statements

 Use the equivalences
=VXx. A is equivalent to 3dx. —A
—=3dx. A is equivalent to Vx. —A

to negate quantifiers.

 Mechanically:
 Push the negation across the quantifier.
 Change the quantifier from V to 3 or vice-versa.

« Use techniques from propositional logic to
negate connectives.



Taking a Negation

Vx. dy. Loves(x, y)

(“Everyone loves someone.”)

=Vx. dy. Loves(x, y)
dx. —3y. Loves(x, y)

dx. Vy. ~Loves(x, y)
(“There's someone who doesn't love anyone.”)



Two Useful Equivalences

« The following equivalences are useful when
negating statements in first-order logic:

-(p A q) is equivalentto p - —q
-(p - q) is equivalentto p A —q

 These identities are useful when negating
statements involving quantifiers.

* A is used in existentially-quantified statements.
 — is used in universally-quantified statements.

« When pushing negations across quantifiers, we
strongly recommend using the above equivalences
to keep — with V and A with 3.



Negating Quantifiers

What is the negation of the following statement,
which says “there is a cute puppy”?

dx. (Puppy(x) A Cute(x))
We can obtain it as follows:

—3x. (Puppy(x) A Cute(x))

Vx. = (Puppy(x) A Cute(x))

Vx. (Puppy(x) —» —~Cute(x))
This says “no puppy is cute.”

Do you see why this is the negation of the original
statement from both an intuitive and formal
perspective?



1S. (Set(S) A Vx. =~ (x € 5))

(“There is a set with no elements.”)

—3S. (Set(S) A Vx. =(x € S))
VS. =(Set(S) A Vx. =(x € S))
VS. (Set(S) — —¥x. =(x € S))
VS. (Set(S) —» Ix. = (x € 9))
VS. (Set(S) —» 3Ix. x € S)

(“Every set contains at least one element.”)



Expressing Uniqueness



Using the predicate

- WayToFindOut(w), which states that w is a way to find
out,

write a sentence in first-order logic that means “there is only
one way to find out.”



There is only one way to find out.



Something is a way to find out, and nothing else is.



Some thing w is a way to find out, and nothing else is.



Some thing w is a way to find out, and nothing besides w
Is a way to find out



Jw. (WayToFindOut(w) A
nothing besides w is way to find out
)



Jw. (WayToFindOut(w) A
anything that isn't w isn't a way to find out
)



Jw. (WayToFindOut(w) A
any thing x that isn't w isn't a way to find out
)



Jw. (WayToFindOut(w) A
Vx. (x # w = x isn't a way to find out)

)



Jw. (WayToFindOut(w) A
Vx. (x # w =» =WayToFindOut(x))

)



Jw. (WayToFindOut(w) A
Vx. (x # w - =WayToFindOut(x))

)



Jw. (WayToFindOut(w) A
Vx. (WayToFindOut(x) - x = w)
)



Jw. (WayToFindOut(w) A
Vx. WayToFindOut(x) - x = w)
)



Expressing Uniqueness

« To express the idea that there is exactly one
object with some property, we write that

» there exists at least one object with that
property, and that

* there are no other objects with that property.

* You sometimes see a special “uniqueness
quantifier” used to express this:

JIx. P(x)

 For the purposes of CS103, please do not use
this quantifier. We want to give you more
practice using the regular V and 3 quantifiers.



Next Time

e Functions

« How do we model transformations and
pairings?

o First-Order Definitions

« Where does first-order logic come into all of
this?

 Proofs with Definitions

 How does first-order logic interact with
proofs?
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