
  

First-Order Logic
Part Two



  

Recap from Last Time



  

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with

● predicates that describe properties of
objects,

● functions that map objects to one another,
and

● quantifers that allow us to reason about
many objects at once.



  

!  is the existential quantifer 

and says “for some choice of

m, the following is true.”

!  is the existential quantifer 

and says “for some choice of

m, the following is true.”

Some rabbit is cute.

∃m. (Rabbit(m) ∧ Cute(m))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

!  is the universal quantifer 

and says “for any choice of n,

the following is true.”

!  is the universal quantifer 

and says “for any choice of n,

the following is true.”



  

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition: 
  

Existentially-quantifed statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 

have property P on top of

property Q.

If x is an example, it must 

have property P on top of

property Q.



  

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:
 

Universally-quantifed statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it

must have property P but

not have property Q.

If x is a counterexample, it

must have property P but

not have property Q.



  

New Stuf!



  

The Aristotelian Forms

“All As are Bs”
 

∀x. (A(x) → B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))

“No As are Bs”
 

∀x. (A(x) → ¬B(x))

“Some As aren’t Bs”
 

∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns to

memory. We’ll be using them throughout

the day and they form the backbone of

many first-order logic translations.

It is worth committing these patterns to

memory. We’ll be using them throughout

the day and they form the backbone of

many first-order logic translations.



  

The Art of Translation



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in frst-order logic that means “every person
loves someone else.”

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25



  

Every person loves someone else 
 
 
 
 



  

Every person loves some other person 
 
 
 
 



  

Every person p loves some other person 
 
 
 
 



  

Every person p loves some other person 
 
 
 
 

“All As are Bs”
 

∀x. (A(x) → B(x))

“All As are Bs”
 

∀x. (A(x) → B(x))



  

∀p. (Person(p) → 
p loves some other person  

 
 
) 

“All As are Bs”
 

∀x. (A(x) → B(x))

“All As are Bs”
 

∀x. (A(x) → B(x))



  

∀p. (Person(p) → 
p loves some other person  

 
 
) 



  

∀p. (Person(p) → 
there is some other person that p loves 

 
 
) 



  

∀p. (Person(p) → 
there is a person other than p that p loves 

 
 
) 



  

∀p. (Person(p) → 
there is a person q, other than p, where p loves q 

 
 
) 



  

∀p. (Person(p) → 
there is a person q, other than p, where 

p loves q 

) 



  

∀p. (Person(p) → 
there is a person q, other than p, where 

p loves q 

) 
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))



  

∀p. (Person(p) → 
∃q. (Person(q) ∧, other than p, where 

p loves q
) 

)
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))



  

∀p. (Person(p) → 
∃q. (Person(q) ∧, other than p, where 

p loves q
) 

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

p loves q
) 

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in frst-order logic that means “there is a
person that everyone else loves.”

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25



  

There is a person that everyone else loves 
 
 
 
 



  

There is a person p where everyone else loves p
 
 
 
 



  

There is a person p where everyone else loves p
 
 
 
 

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))



  

∃p. (Person(p) ∧ 
everyone else loves p

)
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))

“Some As are Bs”
 

∃x. (A(x) ∧ B(x))



  

∃p. (Person(p) ∧ 
everyone else loves p

)



  

∃p. (Person(p) ∧ 
every other person q loves p

)



  

∃p. (Person(p) ∧ 
every person q, other than p, loves p

)



  

∃p. (Person(p) ∧ 
every person q, other than p, loves p

)
“All As are Bs”

 

∀x. (A(x) → B(x))

“All As are Bs”
 

∀x. (A(x) → B(x))



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)
“All As are Bs”

 

∀x. (A(x) → B(x))

“All As are Bs”
 

∀x. (A(x) → B(x))



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

    ∃q. (Person(q) ∧ p ≠ q ∧

∀p. (Person(p) →

        Loves(p, q)

    )

)

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “Every person loves someone
else”

For every person…

… there is another person …

… they love

∀p. (Person(p) →

        Loves(p, q)

    )

)

    ∃q. (Person(q) ∧ p ≠ q ∧ 



  

    ∀q. (Person(q) ∧ p ≠ q → 

∃p. (Person(p) ∧

        Loves(q, p)

    )

)

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “There is someone everyone
else loves.”

There is a person…

… that everyone else …

… loves.

    ∀q. (Person(q) ∧ p ≠ q → 

∃p. (Person(p) ∧

        Loves(q, p)

)

    )



  

    ∀q. (Person(q) ∧ p ≠ q → 

∃p. (Person(p) ∧

        Loves(q, p)

        Loves(p, q)

    ∃q. (Person(q) ∧ p ≠ q ∧ 

∀p. (Person(p) →

For Comparison

)

For every person…

… there is another person …

… they love

    )

    )

)

There is a person…

… that everyone else …

… loves.



  

Every Person Loves Someone Else



  

Every Person Loves Someone Else

No one here

is universally

loved.

No one here

is universally

loved.



  

There is Someone Everyone Else Loves



  

There is Someone Everyone Else Loves

This person

does not

love anyone

else.

This person

does not

love anyone

else.



  

Every Person Loves Someone Else and
There is Someone Everyone Else Loves



  

∧     

For every person…

… there is another person …

… they love

and

There is a person…

… that everyone else …

… loves.

∀p. (Person(p) →

        Loves(p, q)

    )

)

    ∃q. (Person(q) ∧ p ≠ q ∧ 

    ∀q. (Person(q) ∧ p ≠ q → 

∃p. (Person(p) ∧

        Loves(q, p)

    )

)



  

Restricted Quantifers



  

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x)
holds.” (It’s vacuously true if S is empty.)

● The notation

∃x ∈ S. P(x)

means “there is an element x of set S
where P(x) holds.” (It’s false if S is
empty.)



  

Quantifying Over Sets

● The syntax

∀x ∈ S. P(x)

∃x ∈ S. P(x)

is allowed for quantifying over sets.

● In CS103, feel free to use these restricted
quantifers, but please do not use variants of this
syntax.

● For example, don't do things like this:

h                   ∀x with P(x). Q(x)                     h

h         ∀y such that P(y) ∧ Q(y). R(y).           h

h                        ∃P(x). Q(x)                           h

   



  

Quantifer Ordering



  

Quantifer Ordering

● Consider these two frst-order formulas:

∀m ∈ ℕ. ∃n ∈ ℕ. m < n.

∃n ∈ ℕ. ∀m ∈ ℕ. m < n.

● One of these statements is true. One is false.
Which is which?

● Why?



  

Quantifer Ordering

● Consider these two frst-order formulas:

∀m ∈ ℕ. ∃n ∈ ℕ. m < n.

● This says

for every natural number m,
there’s a larger natural number n.

● This is true: given any m ∈ ℕ, we can choose n 
to be m + 1.

● Notice that we can pick n based on m, and we
don’t have to pick the same n each time.



  

Quantifer Ordering

● Consider these two frst-order formulas:

● This says

there is a natural number n
that’s larger than every m ∈ ℕ

● This is false: no natural number is bigger than
every natural number.

● Because ∃n ∈ ℕ comes frst, we have to make a
single choice of n that works.



  

Quantifer Ordering

● The statement

 ∀x. ∃y. P(x, y)  

means “for any choice of x, there's some
choice of y where P(x, y) is true.”

● The choice of y can be diferent every
time and can depend on x.



  

Quantifer Ordering

● The statement

 ∃x. ∀y. P(x, y)  

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any
choice of y, this places a lot of
constraints on what x can be.



  

Order matters when mixing existential
and universal quantifers!



  

Set Translations



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “the empty
set exists.”



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “the empty
set exists.”

First-order logic doesn't have set

operators or symbols “built in.” If we

only have the predicates given above,

how might we describe this?

First-order logic doesn't have set

operators or symbols “built in.” If we

only have the predicates given above,

how might we describe this?



  

The empty set exists.(
(
(



  

There is some set S that is empty.(
(
(



  

∃S. (Set(S) ∧ 
S is empty. ∧

)



  

∃S. (Set(S) ∧ 
there are no elements in S∧

)



  

∃S. (Set(S) ∧ 
¬there is an element in S

)



  

∃S. (Set(S) ∧ 
¬there is an element x in S

)



  

∃S. (Set(S) ∧ 
¬∃x. x ∈ S

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
there are no elements in S(

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
every object does not belong to S(

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
every object x does not belong to S(

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ 
∀x. x ∉ S

)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Both of these translations are correct.

Just like in propositional logic, there are

many different equivalent ways of

expressing the same statement in first-

order logic.

Both of these translations are correct.

Just like in propositional logic, there are

many different equivalent ways of

expressing the same statement in first-

order logic.



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)



  

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Why can we switch which

quantifier we’re using here?

Why can we switch which

quantifier we’re using here?



  

Mechanics: Negating Statements



  

An Extremely Important Table

For all objects x,
P(x) is true.

There is an x where
P(x) is false.

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true.

There is an x where
P(x) is false.

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false. ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false. ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

Negating First-Order Statements

● Use the equivalences

¬∀x. A   is equivalent to   ∃x. ¬A

¬∃x. A   is equivalent to   ∀x. ¬A

to negate quantifers.

● Mechanically:

● Push the negation across the quantifer.

● Change the quantifer from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to
negate connectives.



  

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)



  

Two Useful Equivalences

● The following equivalences are useful when
negating statements in frst-order logic:

¬(p ∧ q)     is equivalent to     p → ¬q

¬(p → q)     is equivalent to     p ∧ ¬q

● These identities are useful when negating
statements involving quantifers.

● ∧ is used in existentially-quantifed statements.

● → is used in universally-quantifed statements.

● When pushing negations across quantifers, we
strongly recommend using the above equivalences
to keep → with ∀ and ∧ with ∃.



  

Negating Quantifers

● What is the negation of the following statement,
which says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))

● This says “no puppy is cute.”

● Do you see why this is the negation of the original
statement from both an intuitive and formal
perspective?



  

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set with no elements.”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)
(“Every set contains at least one element.”)



  

Expressing Uniqueness



  

Using the predicate

   - WayToFindOut(w), which states that w is a way to fnd
out,

write a sentence in frst-order logic that means “there is only
one way to fnd out.”



  

There is only one way to find out. ∀
∀
∀



  

Something is a way to find out, and nothing else is. ∀
∀
∀



  

Some thing w is a way to find out, and nothing else is. ∀
∀
∀



  

Some thing w is a way to find out, and nothing besides w
is a way to find out∀
∀



  

∃w. (WayToFindOut(w) ∧ 
nothing besides w is way to find out ∀

)



  

∃w. (WayToFindOut(w) ∧ 
anything that isn't w isn't a way to find out ∀

)



  

∃w. (WayToFindOut(w) ∧ 
any thing x that isn't w isn't a way to find out ∀∀

)



  

∃w. (WayToFindOut(w) ∧ 
∀x. (x ≠ w → x isn't a way to find out)

)



  

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → ¬WayToFindOut(x))

)



  

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → ¬WayToFindOut(x))

)



  

∃w. (WayToFindOut(w) ∧
∀x. (WayToFindOut(x) → x = w)

)



  

∃w. (WayToFindOut(w) ∧
∀x. (WayToFindOut(x) → x = w)

)



  

Expressing Uniqueness

● To express the idea that there is exactly one
object with some property, we write that

● there exists at least one object with that
property, and that

● there are no other objects with that property.

● You sometimes see a special “uniqueness
quantifer” used to express this:

∃!x. P(x)  
● For the purposes of CS103, please do not use

this quantifer. We want to give you more
practice using the regular ∀ and ∃ quantifers.



  

Next Time

● Functions

● How do we model transformations and
pairings?

● First-Order Defnitions

● Where does frst-order logic come into all of
this?

● Proofs with Defnitions

● How does frst-order logic interact with
proofs?
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