

First-Order Logic
Part Two

Recap from Last Time

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with

● predicates that describe properties of
objects,

● functions that map objects to one another,
and

● quantifers that allow us to reason about
many objects at once.

! is the existential quantifer

and says “for some choice of

m, the following is true.”

! is the existential quantifer

and says “for some choice of

m, the following is true.”

Some rabbit is cute.

∃m. (Rabbit(m) ∧ Cute(m))

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

! is the universal quantifer

and says “for any choice of n,

the following is true.”

! is the universal quantifer

and says “for any choice of n,

the following is true.”

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))

Useful Intuition:

Existentially-quantifed statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must

have property P on top of

property Q.

If x is an example, it must

have property P on top of

property Q.

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))

Useful Intuition:

Universally-quantifed statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it

must have property P but

not have property Q.

If x is a counterexample, it

must have property P but

not have property Q.

New Stuf!

The Aristotelian Forms

“All As are Bs”

∀x. (A(x) → B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

“No As are Bs”

∀x. (A(x) → ¬B(x))

“Some As aren’t Bs”

∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns to

memory. We’ll be using them throughout

the day and they form the backbone of

many first-order logic translations.

It is worth committing these patterns to

memory. We’ll be using them throughout

the day and they form the backbone of

many first-order logic translations.

The Art of Translation

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in frst-order logic that means “every person
loves someone else.”

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25

Every person loves someone else

Every person loves some other person

Every person p loves some other person

Every person p loves some other person

“All As are Bs”

∀x. (A(x) → B(x))

“All As are Bs”

∀x. (A(x) → B(x))

∀p. (Person(p) →
p loves some other person

)

“All As are Bs”

∀x. (A(x) → B(x))

“All As are Bs”

∀x. (A(x) → B(x))

∀p. (Person(p) →
p loves some other person

)

∀p. (Person(p) →
there is some other person that p loves

)

∀p. (Person(p) →
there is a person other than p that p loves

)

∀p. (Person(p) →
there is a person q, other than p, where p loves q

)

∀p. (Person(p) →
there is a person q, other than p, where

p loves q

)

∀p. (Person(p) →
there is a person q, other than p, where

p loves q

)
“Some As are Bs”

∃x. (A(x) ∧ B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

∀p. (Person(p) →
∃q. (Person(q) ∧, other than p, where

p loves q
)

)
“Some As are Bs”

∃x. (A(x) ∧ B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

∀p. (Person(p) →
∃q. (Person(q) ∧, other than p, where

p loves q
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

p loves q
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in frst-order logic that means “there is a
person that everyone else loves.”

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25

There is a person that everyone else loves

There is a person p where everyone else loves p

There is a person p where everyone else loves p

“Some As are Bs”

∃x. (A(x) ∧ B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

∃p. (Person(p) ∧
everyone else loves p

)
“Some As are Bs”

∃x. (A(x) ∧ B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

∃p. (Person(p) ∧
everyone else loves p

)

∃p. (Person(p) ∧
every other person q loves p

)

∃p. (Person(p) ∧
every person q, other than p, loves p

)

∃p. (Person(p) ∧
every person q, other than p, loves p

)
“All As are Bs”

∀x. (A(x) → B(x))

“All As are Bs”

∀x. (A(x) → B(x))

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)
“All As are Bs”

∀x. (A(x) → B(x))

“All As are Bs”

∀x. (A(x) → B(x))

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

q loves p
)

)

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

 ∃q. (Person(q) ∧ p ≠ q ∧

∀p. (Person(p) →

 Loves(p, q)

)

)

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “Every person loves someone
else”

For every person…

… there is another person …

… they love

∀p. (Person(p) →

 Loves(p, q)

)

)

 ∃q. (Person(q) ∧ p ≠ q ∧

 ∀q. (Person(q) ∧ p ≠ q →

∃p. (Person(p) ∧

 Loves(q, p)

)

)

Combining Quantifers

● Most interesting statements in frst-order
logic require a combination of
quantifers.

● Example: “There is someone everyone
else loves.”

There is a person…

… that everyone else …

… loves.

 ∀q. (Person(q) ∧ p ≠ q →

∃p. (Person(p) ∧

 Loves(q, p)

)

)

 ∀q. (Person(q) ∧ p ≠ q →

∃p. (Person(p) ∧

 Loves(q, p)

 Loves(p, q)

 ∃q. (Person(q) ∧ p ≠ q ∧

∀p. (Person(p) →

For Comparison

)

For every person…

… there is another person …

… they love

)

)

)

There is a person…

… that everyone else …

… loves.

Every Person Loves Someone Else

Every Person Loves Someone Else

No one here

is universally

loved.

No one here

is universally

loved.

There is Someone Everyone Else Loves

There is Someone Everyone Else Loves

This person

does not

love anyone

else.

This person

does not

love anyone

else.

Every Person Loves Someone Else and
There is Someone Everyone Else Loves

∧

For every person…

… there is another person …

… they love

and

There is a person…

… that everyone else …

… loves.

∀p. (Person(p) →

 Loves(p, q)

)

)

 ∃q. (Person(q) ∧ p ≠ q ∧

 ∀q. (Person(q) ∧ p ≠ q →

∃p. (Person(p) ∧

 Loves(q, p)

)

)

Restricted Quantifers

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x)
holds.” (It’s vacuously true if S is empty.)

● The notation

∃x ∈ S. P(x)

means “there is an element x of set S
where P(x) holds.” (It’s false if S is
empty.)

Quantifying Over Sets

● The syntax

∀x ∈ S. P(x)

∃x ∈ S. P(x)

is allowed for quantifying over sets.

● In CS103, feel free to use these restricted
quantifers, but please do not use variants of this
syntax.

● For example, don't do things like this:

h ∀x with P(x). Q(x) h

h ∀y such that P(y) ∧ Q(y). R(y). h

h ∃P(x). Q(x) h

Quantifer Ordering

Quantifer Ordering

● Consider these two frst-order formulas:

∀m ∈ ℕ. ∃n ∈ ℕ. m < n.

∃n ∈ ℕ. ∀m ∈ ℕ. m < n.

● One of these statements is true. One is false.
Which is which?

● Why?

Quantifer Ordering

● Consider these two frst-order formulas:

∀m ∈ ℕ. ∃n ∈ ℕ. m < n.

● This says

for every natural number m,
there’s a larger natural number n.

● This is true: given any m ∈ ℕ, we can choose n
to be m + 1.

● Notice that we can pick n based on m, and we
don’t have to pick the same n each time.

Quantifer Ordering

● Consider these two frst-order formulas:

● This says

there is a natural number n
that’s larger than every m ∈ ℕ

● This is false: no natural number is bigger than
every natural number.

● Because ∃n ∈ ℕ comes frst, we have to make a
single choice of n that works.

Quantifer Ordering

● The statement

 ∀x. ∃y. P(x, y)

means “for any choice of x, there's some
choice of y where P(x, y) is true.”

● The choice of y can be diferent every
time and can depend on x.

Quantifer Ordering

● The statement

 ∃x. ∀y. P(x, y)

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any
choice of y, this places a lot of
constraints on what x can be.

Order matters when mixing existential
and universal quantifers!

Set Translations

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “the empty
set exists.”

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in frst-order logic that means “the empty
set exists.”

First-order logic doesn't have set

operators or symbols “built in.” If we

only have the predicates given above,

how might we describe this?

First-order logic doesn't have set

operators or symbols “built in.” If we

only have the predicates given above,

how might we describe this?

The empty set exists.(
(
(

There is some set S that is empty.(
(
(

∃S. (Set(S) ∧
S is empty. ∧

)

∃S. (Set(S) ∧
there are no elements in S∧

)

∃S. (Set(S) ∧
¬there is an element in S

)

∃S. (Set(S) ∧
¬there is an element x in S

)

∃S. (Set(S) ∧
¬∃x. x ∈ S

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
there are no elements in S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
every object does not belong to S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
every object x does not belong to S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧
∀x. x ∉ S

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Both of these translations are correct.

Just like in propositional logic, there are

many different equivalent ways of

expressing the same statement in first-

order logic.

Both of these translations are correct.

Just like in propositional logic, there are

many different equivalent ways of

expressing the same statement in first-

order logic.

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Why can we switch which

quantifier we’re using here?

Why can we switch which

quantifier we’re using here?

Mechanics: Negating Statements

An Extremely Important Table

For all objects x,
P(x) is true.

There is an x where
P(x) is false.

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true.

There is an x where
P(x) is false.

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true.

For all objects x,
P(x) is false.

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false.

There is an x where
P(x) is true.

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false.

For all objects x,
P(x) is true.

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false. ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false. ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

Negating First-Order Statements

● Use the equivalences

¬∀x. A is equivalent to ∃x. ¬A

¬∃x. A is equivalent to ∀x. ¬A

to negate quantifers.

● Mechanically:

● Push the negation across the quantifer.

● Change the quantifer from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to
negate connectives.

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)

Two Useful Equivalences

● The following equivalences are useful when
negating statements in frst-order logic:

¬(p ∧ q) is equivalent to p → ¬q

¬(p → q) is equivalent to p ∧ ¬q

● These identities are useful when negating
statements involving quantifers.

● ∧ is used in existentially-quantifed statements.

● → is used in universally-quantifed statements.

● When pushing negations across quantifers, we
strongly recommend using the above equivalences
to keep → with ∀ and ∧ with ∃.

Negating Quantifers

● What is the negation of the following statement,
which says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))

● This says “no puppy is cute.”

● Do you see why this is the negation of the original
statement from both an intuitive and formal
perspective?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set with no elements.”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)
(“Every set contains at least one element.”)

Expressing Uniqueness

Using the predicate

 - WayToFindOut(w), which states that w is a way to fnd
out,

write a sentence in frst-order logic that means “there is only
one way to fnd out.”

There is only one way to find out. ∀
∀
∀

Something is a way to find out, and nothing else is. ∀
∀
∀

Some thing w is a way to find out, and nothing else is. ∀
∀
∀

Some thing w is a way to find out, and nothing besides w
is a way to find out∀
∀

∃w. (WayToFindOut(w) ∧
nothing besides w is way to find out ∀

)

∃w. (WayToFindOut(w) ∧
anything that isn't w isn't a way to find out ∀

)

∃w. (WayToFindOut(w) ∧
any thing x that isn't w isn't a way to find out ∀∀

)

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → x isn't a way to find out)

)

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → ¬WayToFindOut(x))

)

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → ¬WayToFindOut(x))

)

∃w. (WayToFindOut(w) ∧
∀x. (WayToFindOut(x) → x = w)

)

∃w. (WayToFindOut(w) ∧
∀x. (WayToFindOut(x) → x = w)

)

Expressing Uniqueness

● To express the idea that there is exactly one
object with some property, we write that

● there exists at least one object with that
property, and that

● there are no other objects with that property.

● You sometimes see a special “uniqueness
quantifer” used to express this:

∃!x. P(x)
● For the purposes of CS103, please do not use

this quantifer. We want to give you more
practice using the regular ∀ and ∃ quantifers.

Next Time

● Functions

● How do we model transformations and
pairings?

● First-Order Defnitions

● Where does frst-order logic come into all of
this?

● Proofs with Defnitions

● How does frst-order logic interact with
proofs?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116

